
Memory	Consistency
Suvinay Subramanian
6.823	Spring	2016

4/21/16 1



Memory	Consistency	Model

A	memory	(consistency)	model	specifies	the	order	in	
which	memory	accesses	performed	by	one	thread	
become	visible	to	other	threads	in	the	program.	

» Contract	between	the	hardware	and	software

» Loosely	speaking,	it	specifies:
- Set	of	legal	values	a	load	can	return
- Set	of	legal	final	memory	states	for	a	program

4/21/16 2



Who	Cares	About	Memory	
Consistency?
» Programmers:
- A	framework	for	writing	parallel	programs
- Simple	reasoning	
- Ability	to	express	as	much	concurrency	as	possible

» Compiler	/	Language	Designers:
- Allow	as	many	compiler	optimizations	as	possible
- Allow	as	much	implementation	flexibility
- Behavior	of	“bad”	programs	(?)

4/21/16 3



Who	Cares	About	Memory	
Consistency?
» Computer	Architects:
- Allow	as	many	hardware	optimizations	as	possible
- Minimize	hardware	overheads
- Implementation	simplicity

4/21/16 4



Ordering	of	Memory	Operations

» This	is	not	an	unfamiliar	problem.	In	a	
uniprocessor,	the	memory	model	is	“sequential	
order”.
- Hardware	(appears	to)	execute	loads	and	stores	in	
program	order

»Out-of-order	preserves	the	same	semantics
- Challenge:	Memory	dependences	à Load-Store	Queues

4/21/16 5



Ordering	of	Memory	Operations

» In	a	multiprocessor,	multiple	threads	running	
simultaneously.

»Notion	of	”time”	/	“order”	within	a	given	thread	
and	across	threads	needs	to	be	maintained	by	
hardware	in	accordance	to	expectations	of	
software.

4/21/16 6



Ordering	of	Memory	Operations

»Why	is	this	important	in	shared	memory	
programming?
- A	task	may	have	to	proceed	“after”	a	different	task	has	
reached	a	certain	point	in	its	code.
- A	task	may	have	to	ensure	no	other	task	is	using	a	
resource	while	it	uses	it.

» Such	communication	of	“order”	often	involves	
multiple	addresses.

4/21/16 7



Sequential	Consistency

“ A system is sequentially consistent if the 
result of any execution is the same as if 
the operations of all the processors were 
executed in some sequential order, and 
the operations of each individual processor 
appear in the order specified by the 
program”.

Leslie Lamport

4/21/16 8



Sequential	Consistency

Two	aspects:
1. Maintaining	program	order	among	operations	

from	individual	processors.
2. Maintaining	single	sequential	order	among	

operations	from	all	processors.

P1 P2 P3 P4

Memory

The	order	of	operations	
observed	need	not	be	
the	same	as	the	physical	
time	the	operations	were	
issued.	

->	Logical	order	is	what	is	
important.4/21/16 9



Violations	of	Sequential	
Consistency
» Store—store	reordering
- Non-FIFO	store	buffers

» Store—Load	reordering
- Store—load	bypassing
- OoO execution

» Register	renaming,	speculation
»Non-blocking	caches
»Unordered	interconnect
»Others…

Processor	
Optimizations

Cache	optimization
Network	optimization

4/21/16 10



Store	Buffers

flag1 = 1
if (flag2 == 0)

<critical section>

flag2 = 1
if (flag1 == 0)

<critical section>

Processor	1	(P1) Processor	2	(P2)

Initial:	flag1,	flag2 =	0

Q:	Can	load	of	flag1	and	flag2	be	0?
No

Also	discussed	in	L17-11

In	a	SC	system?	
Loads	can	go	ahead	of	stores? Yes

Dekker’s	Algorithm

4/21/16 11



Overlapping	Writes	/	Unordered	
Network

data = 2000
flag = 1

while (flag == 0);
r1 = data

Processor	1	(P1) Processor	2	(P2)

Q:	What	is	the	value	of	r1 in	a	SC	system? 2000

4/21/16 12



Overlapping	Writes	/	Unordered	
Network

data = 2000
flag = 1

while (flag == 0);
r1 = data

Processor	1	(P1) Processor	2	(P2)

Q:	What	is	the	value	of	r1 in	a	SC	system? 2000

P1 P2

General	Interconnect

Memory

Q:	What	if	write	of	
flag ”overtakes”	
write	of	data ?

4/21/16 13



Non-blocking	Reads	/	Unordered	
Network

data = 2000
flag = 1

while (flag == 0);
r1 = data

Processor	1	(P1) Processor	2	(P2)

Q:	What	is	the	value	of	r1 in	a	SC	system? 2000

P1 P2

General	Interconnect

Memory

Q:	What	if	reads	are	
non-blocking?

4/21/16 14



Relaxed	Memory	Models

Relax	along	two	axes:
1. Program	order	requirement
2. Atomicity	requirement

Several	models:	TSO,	Power,	Alpha	etc.
Relax	one	or	more	of	the	following	orderings:
- Load	à Load
- Load	à Store
- Store	à Store
- Store	à Load
4/21/16 15



Total	Store	Order	(TSO)

1. Load	à Load
2. Load	à Store
3. Store	à Store
4. Store	à Load

TSO	relaxes	the	last	requirement.

What	optimization	does	this	allow?

All	required	for	SC

Store	buffers

4/21/16 16



Total	Store	Order	(TSO)

x = NEW
r1 = y

y = NEW
r2 = x

Processor	1	(P1) Processor	2	(P2)

Initial:	x,	y =	0

Q:	Is	(r1,	r2)	=	(0,	0)	possible	in	a	SC	system? No

Q:	Is	(r1,	r2)	=	(0,	0)	possible	in	a	TSO	system? Yes!

4/21/16 17



Memory	Fences

» Idea:	Not	all	accesses	need	to	be	“strictly”	ordered.	
Programmer	identifies	regions	which	need	(not)	be	
ordered.

»Primitives	that	prevent	otherwise	permitted	re-
orderings	of	loads	and	stores
»Different	flavors	on	different	systems:
- Sparc:	MEMBAR
- x86:	LFENCE,	SFENCE,	MFENCE

4/21/16 18



Memory	Fences

Where	should	you	add	a	fence	in	a	TSO	system?

flag1 = 1
if (flag2 == 0)

<critical section>

flag2 = 1
if (flag1 == 0)

<critical section>

Processor	1	(P1) Processor	2	(P2)

Initial:	flag1,	flag2 =	0

4/21/16 19



Test	Your	Understanding

1. Memory	consistency	model	is	only	relevant	to	
systems	with	multiple	copies	of	share	data	(eg.	
through	caching).	True/False?

2. Memory	consistency	model	can	be	defined	solely	
by	specifying	the	behavior	of	the	processor	(or	
only	the	memory	system).	True/False?

4/21/16 20



Test	Your	Understanding

3. The	memory	consistency	model	dictates	the	
legal-orderings	of		coherence	transactions.	
True/False?

4/21/16 21



Coherence	and	Consistency

» Coherence:	Concerned	with	single	address.			
Consistency:	Concerns	multiple	addresses.

» Consistency:	Part	of	specification	of	hardware	
(contract	between	hardware	and	software).
Coherence:	Transparent	to	software.	Performance	
optimization.	But	often	used	as	a	mechanism	to	
maintain	consistency.

» Studied	in	a	decoupled	fashion,	but	often	interact	
causing	non-trivial	bugs.	
- Eg:	Peekaboo	problem

4/21/16 22



Problem	4.11

4/21/16 23

1.1: ST(A),1
1.2: LD Rc, (C)

Processor	1	(P1) Processor	2	(P2)

2.1: ST(B),1
2.2: LD Ra, (A)

Processor	3	(P3)

3.1: ST(C),1
3.2: LD Rb, (B)

Q:	In	a	SC	system,	can	{Ra,	Rb,	Rc}	be:
{0,	0,	0}:	

{0,	1,	0}:	



4/21/16 24

Problem	4.11

1.1: ST(A),1
1.2: LD Rc, (C)

Processor	1	(P1) Processor	2	(P2)

2.1: ST(B),1
2.2: LD Ra, (A)

Processor	3	(P3)

3.1: ST(C),1
3.2: LD Rb, (B)

Q:	Insert	mem	fences	to	prevent	non-SC	states	in	a	WO	system.



Summary

»Memory	Consistency:
Contract	between	hardware	and	software.	Defines	
valid	memory	orderings.

» Tradeoff	between	correctness,	ease	of	
programming,	complexity,	performance

» Relaxed	memory	models
- Allow	certain	reorderings
- Use	fences	to	disallow	reorderings as	required

4/21/16 25


